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A finite temperature version of body-centered solid-on-solid growth models involving attachment and de-
tachment of dimers is discussed in 1+1 dimensions. The dynamic exponent of the growing interface is studied
numerically via the spectrum gap of the underlying evolution operator. The finite size scaling of the latter is
found to be affected by a standard surface tension term on which the growth rates depend. This nonuniversal
aspect is also corroborated by the growth behavior observed in large scale simulations. By contrast, the
roughening exponent remains robust over wide temperature ranges.
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I. INTRODUCTION

In studying statistical aspects of nonequilibrium surfaces
the onset of scaling regimes at both large time and length
scales has enabled one to characterize a vast body of growth
processes in terms of universality classes �1�. In analogy to
equilibrium phase transitions, there is consensus in that the
late evolution stages of these processes are controlled by a
set of scaling exponents stemming ultimately from the sym-
metries and conservations laws of the underlying growth
rules. A basic quantity of interest investigated extensively in
this context concerns the roughness or surface width W�L , t�
developed by growth fluctuations at a given time t when
starting from an initially flat substrate of typical length L.
Based on a wide range of theoretical and numerical studies it
can be argued that W scales as �1,2�

W�L,t� = L�f�t/Lz� , �1�

with a universal scaling function behaving as f�x��x�/z for
x�1, whereas for x�1 it remains constant. Consequently,
for t�Lz the width saturates as L� while growing as t�/z in the
thermodynamic limit. The roughening exponent � measures
the stationary dependence of the surface width on the typical
substrate size while z, frequently referred to as the dynamic
exponent, gives the fundamental scaling between length and
time.

In this work we focus on rather unusual scaling properties
studied in recent years both in one �3–5� and two dimen-
sional interfaces �6� by means of discrete models of surface
growth. For simplicity, here we consider a body-centered
solid-on-solid �BCSOS� version of these �5�, limiting height
differences between neighbors to ±1 rather than to 0 , ±1, as
in restricted SOS realizations �3,4�. Our basic kinetic steps
�depicted schematically in Fig. 1�, involve adsorption and
desorption, possibly after recombination, of dimers only. At-
tempts of desorption can take place whether or not the se-
lected pair of adjacent monomers arrived together. Therefore,
the rule for evaporation allows for reconstitution of dimers, a
crucial feature, so their identity is not maintained during the
growth process.

It is important to note that throughout the stochastic evo-
lution the parity of the number of monomers �eventually iso-
lated� is conserved at each height level of the surface. The
implications of this “evenness” nonlocal constraint on the

scaling exponents are far reaching �3,6�, and in the one di-
mensional �1D� case have been analyzed in terms of even
visiting random walks. In this latter representation, interface
configurations are thought of as Brownian paths whose loca-
tions �i.e., height levels� are visited an even number of times
before the walk terminates on a given time interval �here
playing the role of the substrate length�. In marked contrast
to normal random walks, the evenness constraint introduces
highly correlated movements giving rise to an anomalous
�subdiffusive� mean square displacement, which in the inter-
face language means a saturated width scaling not as L1/2 but
rather as L1/3 �3�. Also, the dynamic exponents z obtained
numerically for these �3–5� and related globally constrained
systems �9,10� are definitely different from those of usual
monomer type interfaces, irrespective of the later evolving
towards equilibrium or nonequilibrium stationary regimes
�as exemplified, respectively, by the Edward-Wilkinson �7�
�EW� and Kardar-Parisi-Zhang �8� �KPZ� universality
classes�. These anomalous aspects of nonlocal constraints
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FIG. 1. The four relevant deposition-evaporation cases and their
respective rates g+ ,g− for a one dimensional BCSOS dimer growing
interface. Adding or removing a dimer �denoted by dotted lines� at
columns hj ,hj+2 can be viewed as flipping the spin-1

2 quartet
sj ,sj+1 ,sj+2 ,sj+3. The involved rates depend on the change of sur-
face tension �2�, which is in turn determined by the spin �or slope�
states of sj−1 and sj+4 �see Eqs. �3� and �6��. Each situation is de-
picted schematically from �a� to �d�.
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should not be regarded as purely academic. In fact, in cata-
lytic surface processes the interplay between the substrate
geometry and the shape of the intervening objects does mat-
ter. In particular, dimers become relevant in the roughening
dynamic of vicinal surfaces, which only allows deposition
and evaporation of diatomic molecules �6�.

To our knowledge, there are no available phenomenologi-
cal equations of growth �e.g., KPZ, EW�, suitable to describe
interface fluctuations arising from deposition-evaporation of
composite particles. The manner in which nonlocalities could
be incorporated in that continuum limit is by far not clear.
However, in probing the robustness of the dissociative dimer
models referred to above some progress can be made by
introducing a continuously tunable parameter without affect-
ing either the symmetries or the conservation laws of their
dynamics. Specifically, we consider a finite temperature ex-
tension of 1D dimer growing interfaces, which for the ease
of our numerical analysis �Sec. III A�, is here taken under
detailed balance conditions. Following Ref. �11�, this is
readily done through a standard surface tension term associ-
ated to configurational energy scales which discourage the
development of strong fluctuations, besides those already
prevented by both BCSOS and evenness constraints. In spite
of these severe restrictions, they should not impede us in
evaluating scaling exponents, as equilibrium surfaces at fi-
nite temperatures are always rough in 1D. In the case of
1D-monomer growing interfaces, the surface tension is not
relevant to drive them out of their universality classes,
though interestingly in 2D it can change the nonlinear term
sign of the KPZ equation thus inducing rough-to-rough tran-
sitions �11,12�. Surprisingly, for dimers it will turn out that
the combined effects of global constraints and surface ten-
sion entail significant changes in the z dynamic exponent,
suggesting rather a nonuniversal temperature dependent
value. In fact, nonuniversal aspects were already observed
over wide temperature ranges in the monomer systems stud-
ied in Refs. �11,12�, although they were ascribed to finite size
effects which become particularly severe in nearing the equi-
librium roughening transition temperature TR �13�. However,
as mentioned above, in our 1D case TR is strictly zero and in
practice all equilibrium correlation lengths can be fairly
bounded as long as temperatures are not taken too low. In
this sense, it is worth mentioning that steep variations of z
will already appear within high temperature regimes �Sec.
III�. By contrast, the roughening exponent � remains robust
as differences with respect to its vanishing tension limit ��
�1/3�, will basically merge with our numerical errors. Since
by definition � is a stationary index, it is just the nonequilib-
rium dynamics that is being strongly affected, as we shall
see.

Turning to methodological issues, as is known, the dy-
namic scaling hypothesis referred to in Eq. �1� is usually put
forward to determine both � and z in a joint way by simulat-
ing the growth dynamics over different substrate sizes. With
the aim of obtaining an independent �separate� evaluation of
these exponents, in addition to this standard procedure we
will also exploit the known equivalence between BCSOS
models and interacting gases of hard-core particles �14�. Fol-
lowing the thread of ideas given in �15�, we will recast the
Metropolis operator that rules our growth simulations in

terms of a quantum spin representation. This latter lends it-
self more readily for a finite size scaling analysis of the gap
of the Metropolis operator which ultimately is related to the
z dynamic exponent. On the one hand this technique avoids
the problem of dealing with long transient regimes though on
the other hand is limited severely by the affordable substrate
sizes. For now let us simply remark that already modest
lengths are able to yield clear finite size trends over wide
temperature ranges. To complement our approach, at low
temperature regimes �where correlation lengths exceed the
sizes reachable by exact diagonalization�, we will rely on
numerical simulations of much larger systems which along
with Eq. �1� will further support the nonuniversal picture.

The layout of this work is organized as follows. In Sec. II
we construct the quantum spin analogy of the standard Me-
tropolis dynamic and briefly touch upon symmetries and
conservation laws. By means of an ulterior nonunitary spin
rotation, this results in a symmetric representation of the Me-
tropolis operator. This simplifies considerably the subsequent
numerical analysis of Sec. III in which the spectrum gap of
this operator is obtained via standard recursive techniques
�16�. The evaluation of dynamic exponents is then extended
to low temperature regimes using standard Monte Carlo
simulations. Finally, Sec. IV contains a summarizing discus-
sion along with some remarks on extensions of this work.

II. DYNAMIC AND REPRESENTATIONS

As usual, the state of a solid-on-solid interface is repre-
sented by a set of single-valued functions �hj�t�� denoting
height levels at positions j=1, . . . ,L measured at a given
time t from a reference substrate of length L. As mentioned
earlier, to prevent arbitrary bulk fluctuations we impose BC-
SOS constraints on these heights which hereafter are taken to
satisfy hj+1−hj = ±1, ∀ j , t, along with periodic boundary
conditions �PBC�. Growth or evaporation of the interface
involves two particles �dimers� at the top of columns hj ,hj+2
which, to comply with the above restrictions, ought
both to be local extrema of the evolving interface. More
specifically, deposition �evaporation� events hj ,hj+2→hj
+2,hj+2+2�hj ,hj+2→hj −2,hj+2−2� can only occur at two
consecutive local minima �maxima� of the heights set �see
Fig. 1�. We stress that evaporation takes place regardless if
these maxima were created together or not, so dimers can
dissociate. Also note that the number of heights at a given
level preserves its parity throughout.

We want the transition rates of these processes to depend
on the surface tension � referred to in Sec. I. In turn, any
model that associates energies to height differences should
provide a plausible description of �. Due to our BCSOS
choice ��h= ±1�, evidently the simplest form of � should
assign an energy ��0 to each double facet exposed between
columns hj and hj+2. Since hj+2−hj =0, ±2, this may be stud-
ied by defining

� =
�

2�
j

	hj+2 − hj	 , �2�

which simply counts the total number of double facets in a
given interface configuration. Therefore, we can construct a
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standard Metropolis process at temperature T after introduc-
ing the following transition probability rates

g±�hj,hj+2 → hj ± 2,hj+2 ± 2� = min�e−�j�/T,1� , �3�

where � j� is the change in surface tension upon depositing
�g+� or removing �g−� a dimer at hj ,hj+2 �henceforth, the
Boltzmann constant kB is set equal to one�. The four possible
scenarios determining the values of these rates, which by
construction obey detailed balance �that is, g±��� /T� /g±�
−�� /T�=e−��/T�, are schematized in Fig. 1. Clearly, in the
high temperature limit we recover the dimer model consid-
ered in �5�, whereas T→0+ serves to favor smooth states
over long transient regimes.

It is often more practical to work in terms of slopes rather
than with interface heights, so in what follows we will em-
ploy the known mapping between BCSOS and hard-core par-
ticle dynamics �14�. This correspondence is easily visualized
in Fig. 1, which simply associates the height differences hj
−hj−1
sj to particles �sj =1� or vacancies �sj =−1�. Con-
versely, the interface heights are obtained as hj =�n	jsn,
modulo a constant level. In particular, in this picture the
surface tension reduces to the Ising Hamiltonian

� =
�

2�
j

sjsj+1, �4�

up to an irrelevant constant, whereas after some straightfor-
ward manipulations, the square deviation of the instanta-

neous average height h̄ of a particular slope configuration 	s�,
i.e., a given realization of the interface “width” W	s�

2 
� j�hj

− h̄�2 /L, has the form

W	s�
2 =

L2 − 1

6L
+

2

L2�
i
j

i�L − j�sisj . �5�

Creating �eliminating� a dimer now amounts to a backwards
����→���� �forwards ����→����� move of
two particles at a time, whereas from Eq. �4� it can be readily
checked that in this representation the corresponding rates
�3� just involve the neighboring states of the flipped quartet
sj ,sj+1 ,sj+2 ,sj+3, namely,

gj
± = min�e±��sj+4−sj−1�,1� , �6�

with �
� /T being from now on our inverse temperature
parameter. Note also that under PBC the interface “magneti-
zation” � jsj vanishes at all evolution stages.

In addition, some constants of motion can be immediately
identified. Evidently, the dimer dynamic exchanges two par-
ticles between four consecutive sites while changing the oc-
cupation of the involved next nearest neighbor locations by
the same amount. If we think of these sites as being part of a
four-partite lattice �=�1+ ¯ +�4 �L /2 even�, hence upon
defining S
� j��

sj as the magnetization of sublattice � it
is clear that the set of dependent quantities ��−1�S

− �−1��S� , ,�=1, . . . ,4� �of which only three are inde-
pendent�, is left invariant throughout. From a more funda-
mental point of view these conservations arise ultimately

from continuous symmetries borne by the Metropolis opera-
tor controlling the probabilities of our slope states, and to-
wards which we now turn.

A. Metropolis operator

As is known, the evolution operator of a Markovian pro-
cess of the kind discussed so far can be constructed generi-
cally as �17�

�s�	M	s� = − R�s → s��, s � s�, �7�

�s	M	s� = �
s��s

R�s → s�� , �8�

where R�s→s�� denotes the transition rate at which configu-
ration 	s� evolves to 	s�� per unit time. At least formally, this
enables one to derive all subsequent probability distributions
	P�t��
�sP�s , t�	s� from the action of the evolution operator
on a given initial state, that is, 	P�t��=e−Mt	P�0�� �17�. In our
problem, R�s→s��=1, e−2� for all compatibles 	s� , 	s��, and
the specific form of M can be readily found by interpreting
the slope configurations 	s�
	s1 , . . . ,sL� as eigenstates of the
z component, say, of Pauli matrices �� 1 , . . . ,�� L assigned to
each slope site. For instance, using spin-1

2 raising and lower-
ing operators �+ ,�−, the operational analog of Eq. �7� will
then read

�
s,s�,s�s�

Ms�,s	s���s	 = − �
j

�gj
+Aj

† + gj
−Aj� , �9�

where the adsorption �desorption� or double exchange opera-
tor Aj

†�Aj� acting on the j quartet referred to above is simply

Aj
† = � j

+� j+1
− � j+2

+ � j+3
− . �10�

Here, gj
± are thought of as diagonal operators in the �z rep-

resentation and whose elements are identified with the rates
of Eq. �6�. In this regard, the ordering of application in Eq.
�9� is immaterial. As for the diagonal elements of Eq. �8�,
needed for conservation of probability, they basically count
the number of ways in which a given configuration 	s� can
evolve to different states 	s�� by flipping an active quartet at
a time. This can be properly tracked down in terms of num-
ber operators n̂=�+�−= �1+�z� /2 and weighting each probed
quartet with its corresponding rate �g±�. The counterpart of
Eq. �8� then becomes

�
s

Ms,s	s��s	 = �
j

gj
+�1 − n̂j�n̂j+1�1 − n̂j+2�n̂j+3

+ �
j

gj
−n̂j�1 − n̂j+1�n̂j+2�1 − n̂j+3� , �11�

which along with Eq. �9� completes the form of our Me-
tropolis operator. Taking into account the spin algebra
��i

+ ,� j
−�=�i,j� j

z, �� j
+ ,� j

−�+
1, the former finally reduces to

M = �
j

�gj
+Aj

† + gj
−Aj��Aj

† + Aj − 1� . �12�

By construction M is a stochastic operator and therefore its
ground state 	�0� has vanishing eigenvalue and corresponds
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to the detailed balance solution of the problem, i.e., 	�0�
��se

−��/2���s�	s�. Instead, its left ground state ��̃	 is an equally
weighted linear combination of all reachable �s	 �note that M
is a non-Hermitian operator whose columns add up to zero�.
With the aid of this left state and starting from an initial
probability distribution 	P�0��, typical quantities of interest,
such as the interface width W2, are calculated as

��̃	Ŵe−Mt	P�0�� �17�. Here, the “width operator” Ŵ is ob-
tained by promoting the slopes of Eq. �5� to �z matrices.

Despite the apparent simplicity of our Metropolis opera-
tor, the A’s above cannot be associated to elementary excita-
tions of any kind and exact analytic treatments may seem
unlikely. Nevertheless, Eq. �12� will permit some numerical
progress on finite size systems after considering a simple
transformation to be discussed later on in Sec. II C. Before
that and for the sake of completeness, we pause to digress
briefly about symmetries and conservation laws of M.

B. Excursus: Constants of Motion

Here we follow Refs. �18,19� in closely related processes.
Recalling that under a rotation by an angle � around the z
direction �± transform as e±i��±, we can therefore choose
angles � for all spins in each sublattice � such that Eq.
�10� �and obviously Eq. �11�� is left invariant. Clearly, this is
the case of

�


�− 1�� = 0. �13�

On the other hand, the infinitesimal generator of this trans-
formation is S=��−1��S

z , with S
z =� j��

� j
z. Since M

=eiS/2Me−iS/2, then �M ,S�=0, and therefore S is preserved by
M. But from the constraint �13� it follows that S can be
rewritten in terms of three independent angles, that is, S
=������−1�S

z − �−1��S�
z � from which one recovers the

three conserved quantities identified before on more intuitive
grounds.

These continuous symmetries entail a number of invariant
subspaces growing at most as L3, which, however, by no
means exhaust all possibilities. For instance, it is straightfor-
ward to see that already the number of jammed configura-
tions �i.e., states that cannot evolve further�, grows exponen-
tially with the system size �18�. This unusual proliferation of
invariant states should be the consequence of a much higher
symmetry of M. Although its explicit operational form might
be difficult to figure out, we can nevertheless follow Ref.
�19� and construct an exponential number of dynamically
disjoint sectors, either jammed or unjammed, regardless of
the value of �. To this end, one defines a reduction rule by
looking at the occurrence of groups of active quartets in a
given configuration 	s�. Each occurrence, if any, is deleted so
the length of the remaining object is reduced in four bits per
deletion. This procedure is applied recursively until one is
left with a string that cannot be further reduced, i.e., an irre-
ducible string I�s�. In turn, the result is unique irrespective of
the order of deletion. To mention only a few examples:
I�	↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↓ ↑ ��= ↓↑ �either in one or two steps�; the
flat interface or antiferro state yields a null string, whereas

any jammed configuration is already an irreducible string of
length L. The key issue to bear in mind is that two states 	s�
and 	s�� belong to the same M subspace ⇔I�s�= I�s�� �19�.
So, this nonlocal construct picks out both the length L=L
−4k and the sequence of the irreducible string’s elements
�their combinations growing exponentially in L�, and ulti-
mately defines the constant of motion under which the M
dynamics take place.

That being said, from now on we shall content ourselves
with studying just the null string subspace selected by ini-
tially flat conditions, for the most part quite natural in the
context of growing interfaces. Note also that the equilibrium
properties of the 1D Hamiltonian �4� are neither analytically
simple to evaluate �e.g., Eq. �5�, not even for �=0�, as the
ensemble of averaged states must be consistent not only with
Sz=0 �PBC� but with a vanishing irreducible string as well
�totally unjammed conditions�, which rules out an exponen-
tial number of states.

C. Symmetric representation

Returning to the discussion of Sec. II A, we may make
some progress on the numerical analysis of M by performing
a similarity transformation so as to map this operator into an
Hermitian matrix. This is feasible because detailed balance
in rates �6� ensures the existence of a representation in which
the evolution operator is self-adjoint �17�. For this purpose, it
suffices to consider a diagonal transformation like the one
discussed in Sec. II B but using pure imaginary angles in-
stead. Specifically, we rotate each jth spin around the z di-
rection by a site dependent angle �field operator�

� j =
i�

2
�� j−1

z + � j+1
z � , �14�

by means of the nonunitary similarity transformation U

=e−i�j�j�j
z/2. Under this rotation � j

±→e±��/2���j−1
z +�j+1

z �� j
±, so it

is simple to check that the double hopping operators of Eq.
�10� transform as

UAj
†U−1 = e��/2���j−1

z −�j+4
z �Aj

†,

UAjU
−1 = e−��/2���j−1

z −�j+4
z �Aj . �15�

This introduces new diagonal operators d̂j in the �z represen-
tation, that like the gj

± operators commute with Aj
† ,Aj, and in

terms of which the off diagonal part of M becomes symmet-
ric. More specifically, this symmetrization is produced by
defining

d̂j = e��/2���j−1
z −�j+4

z �gj
+ = e−��/2���j−1

z −�j+4
z �gj

−, �16�

their diagonal elements being e−��/2�	sj−1−sj+4	. As a result, Eq.

�9� is transformed into −� jd̂j�Aj
†+Aj� while Eq. �11� is left

unchanged, so the rotated Metropolis operator H=UMU−1

can be finally cast in the symmetric form

H = �
j

�Aj
† + Aj��gj

−Aj
† + gj

+Aj − d̂j� . �17�

Consequently, the time dependent probability distribution
turns out to be a superposition of orthogonal eigenlevels
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	���0� with real eigenvalues ��0 of H, each having typical
lifetimes 1/�. In particular, the ground state 	�0� has eigen-
value �=0, and is just the transformed Boltzmann distribu-
tion 	�0� referred to above, i.e., 	�0�=U	�0�
��se

−��/4���s�	s�. Since left and right levels now coincide, it is
thereby a simple matter to check that in the symmetric rep-
resentation the dynamic of any diagonal observable, say the

interface width ŴL= 2
L2 �i
ji�L− j��i

z� j
z �in turn invariant un-

der U�, can be written as

W2�L,t� = Weq
2 + �

�L�0
e−�Lt��0	ŴL	��L

���0	P��0�� , �18�

where Weq
2 is the saturation width reached at equilibrium,

whereas 	P��0��=U	P�0�� denotes the transformed initial dis-
tribution. From here we see that if the spectrum gap vanishes
as 1/Lz, then a finite size scaling analysis of the first excited
levels �L will provide the dynamic z-exponent ruling over
the late roughening stages referred to in Sec. I.

It is worth pointing out that the discussion presented so
far can be readily extended to include monomers �m=1�,
trimers �m=3�, etc., so long as the operators involved in Eq.
�17� are reinterpreted as

Aj
† = 

i=1

m

� j+2i−2
+ � j+2i−1

− ,

gj
± = min�e±��sj+2m−sj−1�,1� ,

d̂j = e−��/2�	sj−1−sj+2m	. �19�

In particular, for monomers with no surface tension ��=0�
the evolution operator reduces to the fully isotropic Heisen-
berg ferromagnet, thus recovering the usual EW dynamic
exponent z=2. Among other numerical aspects, in what fol-
lows we shall focus on the evaluation of this quantity at �
�0 for both m=1 and 2.

III. NUMERICAL RESULTS

The above ideas provide an alternative manner to evaluate
dynamic exponents, independently of those obtained by the
application of the dynamic scaling hypothesis �1�. Thus, we
first explore the consequences arising from the exact diago-
nalization of Eq. �17� in small systems, and then go on to
corroborate them over larger length scales �via Eq. �1�� using
standard Monte Carlo simulations. In addition, these latter
will complement the evaluation of z in low temperature re-
gimes where, as we shall see, resorting to small lattice sizes
might become inadequate.

A. Scaling the gap

To analyze our stochastic matrix we first obtained its null-
string basis using dimers on rings of sizes L=4k. This was
easily implemented by applying H �or alternatively, M� to
either of the two antiferro states and keeping proper track of
the new generated configurations. By iterating this procedure
with those new states for which H was not previously ap-

plied, the whole null-string subspace was finally expanded.
The total number of states so found is of course independent
of �, and as expected �see Sec. II B�, grows slower than the
monomer space dimensionality � L

L/2
��2L. More specifically,

this dimension seems to increase as �1.6�7�L, at least for the
sizes at hand, which in turn allowed us to explore rings of up
to 32 sites �20�.

Once having identified the null-string configurations, we
proceeded to evaluate exactly the low lying levels of H �in
principle, just the first excited will do�, via a recursion type
Lanczos algorithm �16�. Starting that recursion from a ran-
dom linear combination of null strings but chosen orthogonal
to the Boltzmann type distribution 	�0� referred to above, we
then obtained the finite size behavior of the dimer gap, i.e.,
of �1. This is shown in Fig. 2 for several temperatures within
the range 0	�	1 indicating a gap decrease �L−z, however,
notice that the data do not fall into parallel straight lines. In
an attempt to standardize this situation we used scalings of
the form �1�L�=A�L−z1 +B�L−z2, but a large amount of uncer-
tainty in both z1 and z2 raised doubts about the adequacy of
such a procedure. Also, logarithmic corrections were at-
tempted but no evidence supporting these latter were found.
Thus, in principle we are led to suggest a plain power law
decay although with a nonuniversal temperature dependent
dynamic exponent z=z���. In particular, z�0��2.6�1� is in
fair agreement with the value obtained in Ref. �5� by stan-
dard simulations of dimer interfaces without surface tension.

A slightly improved estimation of z can be made by de-
fining an effective dynamic exponent

zL =
ln��1�L − 4�/�1�L��

ln�L/�L − 4��
, �20�

and then extrapolating zL to L→� for a given �. The results
of this are exhibited in Fig. 3, which for comparison also
displays the corresponding monomer dynamic exponents.
These latter were derived using Eq. �19� for m=1 along with
a similar numerical analysis but employing L=2k�	24� in-

0.1

1

16 20 24 28 32

L

λ (κ)1

z ∼ 2.13

2.21

2.38

2.51

2.61

FIG. 2. Finite size behavior of the first excited level �1 of the
Metropolis operator �17�. The inverse temperature � decreases from
top to bottom, each symbol standing, respectively, for �
=1, 2

3 , 2
5 , 1

5 ,0. The dynamic exponents z are read off from the slopes
of the fitting lines.
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stead. Clearly, an EW behavior characterized by the Heisen-
berg exponent z=2 mentioned a little earlier can be discerned
in monomer interfaces, as opposed to dimer exponents,
which evidently are nonuniversal, at least if we are to judge
by their �20% variation between ��0 and 1. Although it is
true that size effects increase monotonically our error mar-
gins with �, they are nevertheless fairly bounded within the
range inspected �see also Fig. 2�.

A measure of these size effects is provided by the equi-
librium correlation length of the associated Ising antiferro-
magnet appearing in Eq. �4�. If this length becomes compa-
rable to our available sizes, particularly at low temperatures,
then the asymptotic dynamics will be distorted on approach-
ing equilibrium as the average antiferromagnetic domain
sizes, representing active regions in the interface, will be cut
off by L. This situation is illustrated in Fig. 4 where we show
the pair correlations C�r�= 1

L� j�� j
z� j+r

z � evaluated in the

ground state or equilibrium distribution of H �as stressed
above, notice that analytic treatments are difficult even in
this simpler case because of the null string constraint im-
posed on Eq. �4��. In between 0	��1, traces of antiferro-
magnetic short range order are nearly smeared out and cor-
relation lengths become small. However, above ��2 they
rapidly grow up and eventually get comparable to our maxi-
mum sizes, so precluding further analyses of the gap �which
in fact comes out to be almost size independent�. Thus, to
complement the results obtained so far and check whether
nonuniversal exponents actually extend down to low tem-
perature regimes, we finally turn to the dynamic scaling hy-
pothesis and simulations using larger substrates.

B. Simulations

Following the Metropolis rules referred to in Sec. II, we
evolved initially flat interfaces with L=210, 211, and 212

heights until reaching their stationary states. After a sequence
of L update attempts at random locations, the time scale was
increased in one unit, i.e., t→ t+1, irrespective of these at-
tempts being successful or not. Measurements of W�t� were
carried out for �=1.3,2.5,4 and were averaged typically
over 104 independent histories. In Fig. 5 we display one of
the characteristic scaling curves obtained using Eq. �1� for
�=4. There, the data collapse was attained by setting rough-
ening exponents ��0.3�4�, which are practically common to
all temperatures studied �see also Fig. 7 below�. By contrast,
this is not the case of the z exponents which, in line with the
results of Sec. III A, are severely altered by �. Although their
precise values are blurred by our not too sensitive collapse
conditions, nevertheless they do follow the nonuniversal
trend already found with our gap analysis, as can be seen in
Fig. 3.

To corroborate further the validity of this claim, we also
conducted simulations in much bigger scales measuring di-

1.8

2.2

2.6

10 10 1
−2 −1

monomer

dimerz

κ

FIG. 3. Nonuniversal exponents of the dimer dynamics. Rhom-
boids indicate the results obtained from finite size scaling extrapo-
lations of Metropolis gaps �see Fig. 2�. For comparison, the tri-
angles exhibit these exponents in the monomer case �close to z
�2�. Filled circles �joined by dotted lines� denote the z values
arising from the dynamic scaling hypothesis �1� applied to much
larger systems at lower temperatures.
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(r

)

FIG. 4. Pair correlations in the ground state of operator �17� for
32 spins. Filled circles ��=0� are representative of high temperature
regimes �which are quantitatively similar up to ��1�. Above �
=2 �open circles�, the underlying correlation lengths become rap-
idly comparable to the lattice size.
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β ∼ 0.2

t/Lz

FIG. 5. Dynamic scaling of the dimer interface width �Eq. �1��
taking �=4. Sizes L=212, 211, and 210 are denoted, respectively, by
triangles, circles, and squares. The data collapse was attained upon
setting ��0.3�4� and z�1.6�7�. The dashed line is fitted with slope
2�=2� /z.
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rectly the growth exponent �
� /z. The reader’s attention is
now directed to Fig. 6 where the width evolution is con-
trasted at high and low temperature regimes in substrates of
106 sites. As expected, nonuniversal aspects show up: after
averaging over �40 histories, clearly two rather different �
exponents emerge and hold for at least two decades. On the
other hand, using the universal roughening exponent �
�1/3 already identified �see further estimations below�, we
thus obtain values of z consistent with those previously en-
countered in smaller systems. For comparison, the inset of
Fig. 6 also shows the typical EW � values of the correspond-
ing monomer cases which, alike their dynamical exponents
in Fig. 3, remain robust under wide temperature intervals.

In respect of the roughening exponents, we finally consid-
ered the saturation or equilibrium widths Weq of a variety of
substrate sizes subject to �=0, 1, 2, and 4. The employed
relaxation times �Lz���, range from 2�106–105 Monte Carlo
steps for the largest cases and, as expected, decrease mono-
tonically with �. Our results are displayed in Fig. 7, clearly
suggesting a common value of �. Due to the pair correlations
involved in Weq �see Eq. �5��, here size effects are also more
noticeable at low temperatures. Nonetheless, a simple nu-
merical fit of both amplitudes and slopes indicates that most
of our data �L�200� can be accounted for by the parametri-
zation

Weq � 0.4�2�e−��L�, �21�

with ��0.3�2�. This means that in equilibrium the interface
becomes actually rough so long as ln L�� is held in the
thermodynamic limit.

IV. CONCLUDING DISCUSSION

To summarize, we have studied numerically the dynamics
of dimer growing interfaces at finite temperatures using two

independent procedures. The first one analyzes the spectrum
gap of the evolution operator �Eq. �17�� by exact diagonal-
ization of small systems, thus picking out dynamic exponents
in a direct manner. Clear finite size trends were obtained in
the range 0	�	1 �Fig. 2�, and fairly bounded extrapola-
tions were derived for z �Fig. 3�. Although the nonlocal sym-
metries �i.e., irreducible strings of Sec. II B� of our stochastic
operators are unaffected by surface tensions, surprisingly, the
z exponents are nonuniversal, being dependent on �. Yet, a
theoretical interpretation of such puzzling behavior remains
quite open. This is in marked contrast with the dynamics of
monomers interfaces, as their tensions do not take over nei-
ther the EW nor the KPZ universality classes, at least in
1+1 dimensions �11�.

Secondly, using the standard scaling hypothesis �Eq. �1�,
Fig. 5� we checked out these findings under lower tempera-
ture regimes where correlation lengths become larger than
our maximum diagonalizable sizes �Fig. 4�. Despite the lim-
ited precision of this method for ��0, our results confirmed
the nonuniversal tendency observed in Sec. III A. In turn,
measurements of growth exponents in much larger substrates
�Fig. 6� further validated the monotonic decrease of z���.

As for the roughening exponents �Fig. 7�, in all studied
cases with ��0 the global constraint referred to in Sec. I
and further examined in terms of irreducible strings �18,19�,
led to anomalous motions of a rather unconventional type
���1/3�, as compared to Levi flights and other restricted
random paths �21�. More specifically, they are consistent
with those of even visiting random walks �3� and not com-
prehensible in terms of EW or diffusive interfaces �e.g.,
monomers�, which are definitely rougher. Under surface ten-
sion the range of correlations so introduced in the associated
walk is finite, and therefore the scaling of its width must
remain unchanged �consult Ref. �21��, though in line with
Eq. �21�, its proportionality constant might depend on the
precise form of these correlations. To endow further this ro-
bustness of �, it would be interesting to elucidate whether the
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FIG. 6. Growth of interface width for 106 sites at �=0 �upper
curve�, and �=6. Dashed lines are fitted with slopes 2�. The inset
displays the corresponding situations for monomer growing
interfaces.
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FIG. 7. Finite size behavior of the saturation width. The symbols
stand in turn for �=0 �circles�, �=1 �squares�, �=2 �triangles�, and
�=4 �rhomboids�. Solid lines display a common slope 2�. As is
shown in the inset, the amplitudes of these latter exhibit an expo-
nential decay with slope −2� �see Eq. �21��.
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analogy of noninteracting electrons moving in a random me-
dium studied in Ref. �3� could be extended to the finite tem-
perature interfaces �walks� investigated here.

Other pending issues of interest concern starting the
growth process from more general initial conditions �i.e., not
in the null string sector�, capable of modifying asymptotic
regimes �5�, as well as considering biased dynamics �without
detailed balance� such as those analyzed in Refs. �11,12�. In
principle, the first situation could also be studied with the
methodology of Sec. II A; however, for the second one the
similarity transformation of Sec. II C is no longer useful and
the unsymmetrization of the Lanczos recursion would be in-
evitable �16�. Finally, 2+1 dimensional generalizations of

this study could shed light on the combined role that dimer
dynamics and substrate geometry might have in catalytic
processes. Whether or not nonuniversal aspects would also
emerge there under surface tension, deserves further investi-
gations.
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